无名图书的logo
无名图书
  • 最近更新
  • 文学
  • 社会文化
  • 历史
  • 经济
  • 理工科
  • 政治
  • 健康
  • 自然科学
  • 计算机
  • 设计
  • 美食旅行
  • 思想
  • 生物
  • 建筑
  • 绘本
  • 天文
  • 出版时间
  • 更新时间
  • 评分
  • 现代分析引论

    邱曙熙

    评分 0.0分

    分析(数学)是研究分析运算——代数运算和极限运算之综合——的数学学科,换言之,分析结构是代数结构和拓扑结构的综合。 本书是供数学专业人员阅读的。考虑到作为研究生教材,显然此书无法在一学期内授完,因而教师可以按具体情况对教材进行取舍。 本书具有如下特点:一是起点低,适当介绍一些本科知识,以保持逻辑的完整性,并且为专业基础程度不齐的学员提供方便;二是尽可能保持各章节的相对独立性(这样难

  • 集合论、拓扑与代数初步

    刘守民, 熊锐

    评分 9.1分

    由于课程设置的因素,学生很难比较系统地接触集合论、拓扑和代数方面的知识。很多教师在遇到一些基本的拓扑和抽象代数的概念时,都只是简单提一下,然后匆匆的进入相应知识的传授。很多低年级同学对于这些概念都会产生似懂非懂,似是而非的感觉,这些跳跃会大大影响学生对教师所受课程的理解,有时也会对这些知识产生一些畏惧心理。本书主要介绍基本的集合论,拓扑结构,代数结构,偏序结构这些“数学常识”,弥补各门数学课程之间

  • 直观拓扑

    王敬庚

    评分 0.0分

    《新世纪高等学校教材•数学教育主干课程系列教材:直观拓扑(第3版)》共分为八章,主要内容包括:什么是拓扑学、多面体的欧拉公式、七桥问题与地图着色问题、几个拓扑定理、曲面、基本群和同调群的直观描述、初等突变理论简介、漫话纽结和链环。

  • 拓扑、测度与积分

    江其保

    评分 0.0分

    《拓扑测度与积分》由江其保编著,属于现代数学基础的入门教材,主要讲授一般测度空间上的积分理论,另有四分之一篇幅介绍集合论预备知识和基本的点集拓扑学。从目录可以看出,本书对于测度和积分的基础理论的介绍相当全面。必须指出,测度论是一个庞大的领域,本书不可能涉及像解析集那样比较专门的内容。本书的第一章系统地介绍了所谓的朴素集合论,其中包括选择公理和基数、序数的一般理论。第二章是点集拓扑学的一个引论。编者

  • 拓扑学

    高红铸//赵旭安//苏效乐

    评分 0.0分

    《拓扑学》是在北京师范大学数学科学学院多次使用的《拓扑学讲义》的基础上编写而成的。适合于数学系本科生拓扑学的教学。全书分为六章,前四章可大致归类于点集拓扑,后两章属于代数拓扑初步。编写过程中我们参考了尤承业的《基础拓扑学》,M.A.Armstrong的《基础拓扑学》,J.R.Munkres的《拓扑学》,余玄冰等人的《拓扑学》,王敬庚的《直观拓扑》等书。编写《拓扑学》的一个指导思想是力求在保持本课程

  • Topology

    James Munkres

    评分 0.0分

  • 拓扑空间论

    高国士

    评分 0.0分

    《拓扑空间论(第2版)》共8章,前4张是托扑空间论的基础知识,后4章是对一般拓扑学两大课题,“覆盖性质”与“广义度量空间”深入研究的成果,介绍了国内外,特别是我国学者在这方面的贡献,为了使读者深入理解《拓扑空间论(第2版)》内容,在每章后安排了大量的习题。

  • 拓扑学习题集/新编数学习题集系列丛书

    邹应

    评分 0.0分

    本习题集可以作为作者在武汉大学出版社先生出版的《数学分析习题休及其解答》的续编,因为在那里有关度量空间部分的习题是放在本习题集中的。 本习题集的绝大部分题目选自参考书目[1],[3],[5]的练习题。为了丰富课程内容及拓展知识面,作者少量地选择了其他参考书目中的一些重要问题作为本习题集的习题,对这些问题的原题解都作了必要的加工,补充

  • 一般拓扑学

    李庆国、汤灿琴、李纪波

    评分 0.0分

    本书系统地介绍了一般拓扑学的基础知识。全书共分8章,内容包括:预备知识、拓扑空间,Moore-Smith收敛,子空间、乘积空间和商空间,度量空间和度量化,紧空间,一致空间,函数空间。每章后还附有适量的习题,以供读者学习后加深理解。本书的特点在于叙述深入浅出,证明过程严谨,详尽易懂,并辅以丰富的例题,使得深奥难懂的拓扑学变得轻松易学。本书适合作大学数学专业本科高年级或硕士研究生低年级的拓扑学入门教材

  • 基础拓扑学

    何伯和

    评分 0.0分

  • 无限维拓扑学引论

    杨寒彪

    评分 0.0分

    《无限维拓扑学引论》是为拓扑学专业的硕士研究生和博士研究生提供的关于度量空间和无限维拓扑学学习的学术专著。相对于国内一般的点集拓扑学著作而言,《无限维拓扑学引论》的重点是度量空间的拓扑学和无限维拓扑学,这恰好是拓扑学在其他学科的应用中重要的部分,同时也满足了在一个相对比较短的篇幅内以比较低的起点给出一些深刻的拓扑学定理的要求。另外,《无限维拓扑学引论》提供的无限维拓扑学知识在国内出版的专著中较少涉