书籍 代数学I的封面

代数学I

B. L. van der Waerden

出版时间

1970-01-01

ISBN

9787030245625

评分

★★★★★
书籍介绍

范德瓦尔登的《代数学》是现代数学的一部奠基之作,这部书不仅对提高数学家的学识修养有很大意义,对现代数学如扑拓学、泛函分析等以及一些其他科学领域也有重要影响。全书共分两卷,本书是第一卷,分成11章:前5章以最小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的最基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。

目录

引言

第1章 数与集合

1.1 集合

1.2 映射,势

1.3 自然数序列

1.4 有限与可数集合

1.5 分类

第2章 群

2.1 群的概念

2.2 子群

2.3 群子集的运算,陪集

2.4 同构与自同构

2.5 同态,正规子群,商群

第3章 环与域

3.1 环

3.2 同态与同构

3.3 商的构成

3.4 多项式环

3.5 理想,同余类环

3.6 整除性,素理想

3.7 Euclid环与主理想环

3.8 因子分解

第4章 向量空间和张量空间

4.1 向量空间

4.2 维数不变性

4.3 对偶向量空间

4.4 体上的线性方程组

4.5 线性变换

4.6 张量

4.7 反对称双线性型与行列式

4.8 张量积,缩并与迹

第5章 多项式

5.1 微分法

5.2 多项式的零点

5.3 内插公式

5.4 因子分解

5.5 不可约性判定标准

5.6 因子分解在有限步下的完成

5.7 对称函数

5.8 两个多项式的结式

5.9 结式作为根的对称函数

5.10 有理函数的部分分式分解

第6章 域论

6.1 子体,素体

6.2 添加

6.3 单纯域扩张

6.4 域的有限扩张

6.5 域的代数扩张

6.6 单位根

6.7 Galois域(有限域)

6.8 可分与不可分扩张

6.9 完全域及不完全域

6.10 代数扩张的单纯性,本原元素定理

6.11 范数与迹

第7章 群论续

7.1 带算子的群

7.2 算子同构和算子同态

7.3 两个同构定理

7.4 正规群列与合成群列

7.5 pn阶群

7.6 直积

7.7 群的特征标

7.8 交错群的单纯性

7.9 可迁性与本原性

第8章 Galois理论

8.1 Galois群

8.2 Galois理论的基本定理

8.3 共轭的群、域与域的元素

8.4 分圆域

8.5 循环域与纯粹方程

8.6 用根式解方程

8.7 n次一般方程

8.8 二次、三次与四次方程

8.9 圆规与直尺作图

8.10 Galois群的计算,具有对称群的方程

8.11 正规基

第9章 集合的序与良序

9.1 有序集合

9.2 选择公理与Zorn引理

9.3 良序定理

9.4 超限归纳法

第10章 无限域扩张

10.1 代数封闭域

10.2 单纯超越扩域

10.3 代数相关性与无关性

10.4 超越次数

10.5 代数函数的微分法

第11章 实域

11.1 有序域

11.2 实数的定义

11.3 实函数的零点

11.4 复数域

11.5 实域的代数理论

11.6 关于形式实域的存在定理

11.7 平方和

索引

Bartel Leendert van der Waerden (February 2, 1903, Amsterdam, Netherlands – January 12, 1996, Zürich, Switzerland) was a Dutch mathematician.

Van der Waerden learned advanced mathematics at the University of Amsterdam and the University of Göttingen, from 1919 until 1926. He was much influenced by Emmy Noether at Göttingen. Amsterdam awarded him a Ph.D. for a thesis on algebrai...

(展开全部)

目录
《代数学I》目录:
引言
第1章 数与集合
1.1 集合
1.2 映射,势

显示全部
用户评论
是最原始的资料。写的清晰,每个知识点都给你列了出来。2014.6.28完全是构造式讲解,最为经典的代数书,再次阅读也依然被里面的精道的讲解所打动。距离范瓦尔登代数学已经有了五十多年,其中关于模的工具已经发生了巨大的改变,利用正合序列和范畴语言来描述。国内本科数学书基本上是这套书的前六章,讲到了伽罗华定理为终结,而环和模的介绍都是及其缺少的。带算子区的群的意思就是群+同态=模=表示=复形,当使用模语言的时候,环和理想都是环上的模,则环可以表示成左右理想的直和而零理想是左右理想的直交。
用语很有时代感,有大量自然语言的解释说明,这种风格在一些证明细节处有时显得不够清楚,但在描述概念时十分直观形象。一些基本概念的定义和导出性质与更新一些的教材刚好相反,更注重这些概念与经典代数和多项式理论的关联,提供了历史动机方面的参考
这本书带我走进了代数学。
这书不管什么年级,读了都不会吃亏
讲抽象代数的书,阅读体验很棒,一气呵成。最美好的回忆之一。
进阶
Z-Library